Electronic Instrumentation and Measurements **THIRD EDITION**

Lambton College of Applied Arts and Technology Sarnia, Ontario, Canada

© Oxford University Press

UNIVERSITY PRESS

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries.

Published in India by Oxford University Press YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

Previous editions published by Prentice-Hall, Inc.

© Oxford University Press 2013

The moral rights of the author/s have been asserted.

First published in 2013

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence, or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above.

> You must not circulate this work in any other form and you must impose this same condition on any acquirer.

> > ISBN-13: 978-0-19-5669614-1 ISBN-10: 0-19-5669614-X

Typeset in Times New Roman by Anvi Composers, New Delhi 110063 Printed in India by Sanat Printers, Kundli, Haryana

Brief Contents

Pref	ace	iii
1.	Measurement Systems, Units, and Standards	1
2.	Measurement Errors	16
3.	Classical Electromechanical Instruments	35
4.	Electromechanical Ammeters, Voltmeters, and Ohmmeters	73
5.	Analog Electronic Instruments	106
6.	Digital Instrument Basics	138
7.	Digital Voltmeters, Multimeters, and Frequency Meters	162
8.	Low, High, and Precise Resistance Measurements	183
9.	Inductance and Capacitance Measurements	215
10.	Classical AC Bridge Methods	230
11.	Analog Oscilloscopes	261
12.	Special Oscilloscopes	313
13.	Signal Generators	339
14.	Instrument Calibration	372
15.	Miscellaneous Instruments	397
16.	Power and Energy Measurement	426
17.	Magnetic Measurement	454
18.	Introduction to Transducers	473
19.	Telemetry	510
App	endix 1: Unit Conversion Factor	552
App	endix 2: Answers for Odd-numbered Problems	555
Inde	x	559

Detailed Contents

Preface		iii
1. Measu	rement Systems, Units, and Standards	1
1-1	Unit Systems	1
	CGS and MKS System 1	
	The SI System 2	
1-2	Scientific Notation and Metric Prefixes	3
	Scientific Notation 3	
	Metric Prefixes 3	
	Engineering Notation 4	
1-3	The SI Mechanical Units	4
	Fundamental Mechanical Units 4	
	Unit of Force 5	
	Work 5	
	Power 5	
	Energy 6	
1-4	The SI Electrical Units	7
	Units of Current and Charge 7	
	Emf, Potential Difference, and Voltage 7	
	Resistance and Conductance 8	
	Magnetic Flux and Flux Density 8	
	Inductance 8 Capacitance 8	
1 5	-	9
1-5	Temperature Units <i>Temperature Scales 9</i>	9
	Joules Equivalent 10	
1.6	Dimensions	10
1-7	Measurement Standards	12
	Standard Classifications 12 IEEE Standards 12	
	ILLE Sumurus IZ	
2. Measu	irement Errors	16
2-1	Error Classifications	16
	Gross and Systematic Errors 16	
	Absolute and Relative Errors 18	
2-2	Accuracy, Precision, Resolution, and Significant Figures	20
	Instrument Accuracy 20	

		Accuracy and Precision 20 Resolution 21 Significant Figures 22		
	2-3	Significant Figures 22 Measurement Error Combinations Sum of Quantities 24 Difference of Quantities 25 Product of Quantities 25 Quotient of Quantities 26	24	f
		Quantity Raised to a Power 26		
	2-4	Basics of Statistical Analysis Arithmetic Mean Value 27 Deviation 28 Standard Deviation 29 Probable Error 29 Gaussian Distribution 29	27	7
		Sample Standard Deviation 31		
3. C	lassic	al Electromechanical Instruments	35	;
	3-1	Measuring Instrument Classifications Instrument Types 35 Absolute and Secondary Instruments 36 Instrument Grades 36 Comparison Instruments 36	35	;
	3-2	Deflection Instrument Fundamentals Operating Forces 37 Suspension 38 Reading Errors 40	37	7
	3-3	Permanent Magnet Moving-Coil Instrument Construction and Operation 41 Torque Equation and Scale 42 Advantages of PMMC Instruments 44 Disadvantages of PMMC Instruments 44	41	
	3-4		45	;
	3-5	Moving-Iron Instruments Attraction-type Moving-iron Instrument 49 Concentric-vane Moving-iron Instrument 51 Torque Equation 51 Advantages of Moving-iron Instruments 52 Disadvantages of Moving-iron Instruments 52	49)

3-6	Electrostatic Instruments Attraction-type Electrostatic Voltmeter 53	53
	Quadrant-type Electrostatic Voltmeter 53	
	\sim Torque Equation 54	
	Advantages of Electrostatic Instruments 56	
	Disadvantages of Electrostatic Instruments 56	
3-7	Thermal-type Instrument	57
	Hot-wire Instrument 57	
	Thermocouples 57	
	Thermocouple Ammeters and Voltmeters 59	
	Thermocouple Bridge 60	
	Advantages of Thermocouple Instruments 61	
	Disadvantages of Thermocouple Instruments 61	
3-8	Galvanometer	62
	Galvanometer Operation 62	
	Moving System Equation 63	
	Damping 64	
	Ballistic Galvanometer 65	
	Null Detector 67	
Electro	mechanical Ammeters, Voltmeters, and Ohmmeters	73
4-1	DC Ammeter	73
	Ammeter Circuit 73	
	Ammeter Scale 75	
	Shunt Resistance 75	
	Swamping Resistance 76	
	Burden Voltage 76	
	Multirange Ammeters 77	
4-2	DC Voltmeter	79
	Voltmeter Circuit 79	
	Swamping Resistance 80	
	Voltmeter Sensitivity 81	
	Loading Effect 81	
	Multirange Voltmeter 81	
4-3	Rectifier Voltmeter	83
	PMMC Instrument on AC 83	
	Full-wave Rectifier Voltmeter 84	
	Half-wave Rectifier Voltmeter 86	
	Half-bridge Full-wave Rectifier Voltmeter 87	
4-4	Rectifier Ammeter	88
4-5	Series Ohmmeter	90
	Basic Ohmmeter Circuit 90	
	Ohmmeter with Zero Adjust 92	
4-6	Shunt Ohmmeter	95
	Shunt Ohmmeter Circuit 95	

		Scale and Controls 96	
	4-7	Ohmmeter Accuracy	98
	4-8	Volt-Ohm-Milliammeter	100
		Front Panel Controls 100	
		Terminals 101	
		Scales 101	
		Accuracy 101	
		Using a VOM as a DC Ammeter 101	
		Using a VOM as a DC Voltmeter 102	
		Using a VOM as an AC Voltmeter 102	
		VOM Probes 102	
5.	Analog	g Electronic Instruments	106
	5-1		107
		Emitter-follower Voltmeters 107	
		Ground Terminals and Floating Power Supplies 110	
		Voltmeter Range Changing 111	
		FET-input Voltmeter 111	
		Difference Amplifier Voltmeter 113	
	5-2	Operational Amplifier Voltmeter Circuits	114
		<i>Op-amp Voltage-follower Voltmeter 114</i>	
		<i>Op-amp Amplifier Voltmeter</i> 115	
		Voltage-to-current Converter 116	
	5-3		117
		Series Ohmmeter 117	
		Shunt Ohmmeter 119	
		Linear Ohmmeter 120	
	5-4	AC Electronic Voltmeters	122
		<i>Op-amp Half-wave Rectifier Voltmeter</i> 122	
		Precision Rectifier Voltmeter 123 Low-level Voltmeter 123	
		Voltage-to-current Converter 124	
		<i>Op-amp Full-wave Rectifier Voltmeter</i> 125	
		<i>Op-amp Half-bridge Rectifier Voltmeter</i> 125	
	5-5	Current Measurement with Electronic Instruments	127
	00	Voltmeter and Shunt 127	12/
		Burden Voltage 127	
	5-6	_	128
		Laboratory-type Electronic Multimeter 128	
		DC Voltage Measurement Procedure 129	
		Resistance Measurement Procedure 130	
		Decibel (dB) and Decibel-Milliwatt (dBm) Measurements 130	
		Frequency Response of AC Instruments 130	
	5-7	Multimeter Probes	131
		High-voltage Probe 131	

		High-current Probe 131 Hall-effect Probe 133	
		Radio-frequency Probe 133	
6.	Digital	Instrument Basics	138
	6-1	Digital Representation of an Analog Quantity	138
		Resolution 138	
		Analog-to-digital Conversion 139	
		LSB and MSB 140	
		Digital-to-analog Conversion 140	
	6-2	0	141
		AND Gate 141	
		OR Gate 142	
		NAND and NOR Gates 143	
		Flip-flops 143 Flip-flop Triggering 145	
		Flip-flop Logic Symbols 145	
	6-3	Digital Displays	146
	0.0	Light-emitting Diode Displays 146	110
		Liquid Crystal Displays 147	
	6-4	Digital Counting	148
		Scale-of-16 Counter 148	
		Decade Counter 149	
		Scale-of-2000 Counter 149	
		Frequency Division 151	
	6-5	Analog-to-digital Converter	153
		Linear-ramp ADC 153	
		Digital-ramp ADC 154	
		Successive Approximation ADC 156	
	6-6	Digital-to-analog Converter	156
7.	Digital	Voltmeters, Multimeters, and Frequency Meters	162
	7-1	Digital Voltmeter Systems	162
		Ramp-generator-type Digital Voltmeter 162	
		Dual-slope-integrator DVM 164	
		Range Changing 166	
	7-2	Digital Multimeters	167
		Basic Hand-held Digital Multimeter 167	
		Accuracy 169	
		High-performance Hand-held DMMs 169	
		Bench-type DMM 169	
		Additional Features 169 Comparison of Digital and Analog Multimeters 170	
	7-3	Digital Frequency Meter	171
	7-3	Frequency Meter System 171	171

	Range Changing 172	
7-4	Frequency Meter Accuracy and Applications	173
	Range Selection Error 173	
	Accuracy Specification 174	
	Reciprocal Counting 176	
	Pulse Time Period and Width Measurement 177	
	Frequency Ratio Measurement 177	
7-5	Frequency Meter Input Stage	178
7-6	Counter/Timer/Frequency Meters	179
Low, H	ligh, and Precise Resistance Measurements	183
8-1	Voltmeter and Ammeter Methods	184
	Two Connections 184	
	Circuit Selection 184	
	Substitution Method 186	
8-2	Wheatstone Bridge	187
	Bridge Circuit 187	
	Accuracy 188	
	Sensitivity 189	
	Range of Measurement 191	
	Using a Wheatstone Bridge 192	
8-3	Low Resistance Measurement	192
	Four-terminal Resistors 192	
	Kelvin Bridge 193	
	Low-resistance Linear Ohmmeter 196	
	Commercial Micro-ohmmeter 196	
8-4	Earth/Ground Resistance Measurement	197
	Need for System Ground Test 197	
	Fall-of-potential Method 198	
	Ground Test Instrument 199 Selective Method 199	
0 5		200
8-5	High-resistance Measurement	200
	Voltmeter and Ammeter Method 200	
	<i>Guard Wire and Guard Ring 200</i> <i>Operator Safety 202</i>	
	Wheatstone Bridge Measurement of High Resistance 202	
8-6	High-resistance Measuring Instruments	203
0-0	Hand-cranked Megohmmeter 203	205
	Voltage-multiplying Circuit 205	
	Commercial Megohmmeter 206	
8-7	Locating Cable Faults	207
07	Identifying Faults 207	207
	Open-circuit Fault Location 207	
	Murray Loop Test 207	
	Varley Loop Test 209	

9.	Induct	ance and Capacitance Measurements	215
	9-1	RC and RL Equivalent Circuits	215
		Capacitor Equivalent Circuits 215	
		Inductor Equivalent Circuits 217	
		<i>Q</i> Factor of an Inductor 218	
		<i>D</i> Factor of a Capacitor 219	
	9-2	Digital <i>RCL</i> Meters	220
		Portable and Bench Instruments 220	
		Component Equivalent Circuit Determination 221	
		Terminals 221	
		Test Frequency 222 Bigs Voltage or Current 222	
	0.2	Bias Voltage or Current 222	222
	9-3	Q Meter	223
		<i>Q-Meter Operation 223</i> <i>Q-Meter Controls 224</i>	
		Residuals 225	
		Commercial Q Meter 226	
		Medium-range Inductance Measurement Procedure (Direct	
		Connection) 226	
		High-impedance Measurement Procedure (Parallel	
		Connection) 227	
		Low-impedance Measurements Procedure (Series	
		Connection) 228	
10.	Classic	cal AC Bridge Methods	230
	10-1	AC Bridge Theory	231
		Circuit and Balance Equations 231	
		Balance Procedure 232	
		AC Bridge Sensitivity 233	
	10-2	Series and Parallel RC Bridges	233
		Simple Capacitance Bridge 233	
		Series-resistance Capacitance Bridge 234	
		Parallel-resistance Capacitance Bridge 236	
	10-3	8	239
		Schering Bridge 239	
		Wien Bridge 242	
	10-4	Inductance Bridges	243
		Inductance Comparison Bridge 243	
		Maxwell Bridge (for Measuring L in terms of C) 244	
		Hay Inductance Bridge (for High-Q Coils) 246	
		Anderson Bridge 248 Owen Bridge 249	
	10 E	-	350
	10-5	Mutual Inductance Bridges Heaviside Bridge 250	250
		Campbell's Modification 251	
		Cumpoen o Ivionification 201	

		Carey–Foster Bridge 251		
	10-6	Miscellaneous AC Bridge Topics	2	253
		Multifunction Bridge 253		
		Incremental Inductance Measurement 253		
		Bridge Screening 255		
		Wagner Earth 255 Substitution Methods 256		
		Substitution Methous 256		
11.	Analog	g Oscilloscopes	2	.61
	11-1	Cathode-ray Tube	2	262
		Construction 262		
		Triode Section 262		
		Focusing Section 263 Deflection Section 264		
		Screen 265		
		Display Brightness 265		
	11-2	Deflection Amplifier	2	266
	11-3	Waveform Display	2	268
	11-4	Oscilloscope Time Base	2	271
		Horizontal Sweep Generator 271		
		Automatic Time Base 274		
	11-5	Dual-trace Oscilloscopes	2	279
		Dual-beam CRT 279		
		Switched Channel Method 280		
		Oscilloscope Controls		282
	11-7	Measurement of Voltage, Frequency, and Phase	2	285
		Peak-to-peak Voltage Measurement 285		
		Frequency Determination 286 Phase Measurement 286		
	11-8	Pulse Measurements	2	288
	11 0	Pulse Amplitude, Pulse Width, and Space Width 288	-	.00
		Rise Time, Fall Time, and Delay Time 289		
		Pulse Distortion 290		
	11-9	Oscilloscope Probes	2	92
		1:1 Probes 292		
		Attenuator Probes 294		
		Probe Calibration 297 Active Probes 297		
	11-10	Display of Device Characteristics	2	298
	11-10	X-Y and Z Displays		300
	11-12	Oscilloscope Specifications and Performance Sensitivity 303	3	803
		Voltage Measurement Accuracy 303		
		Frequency Response 304		

		Time Base Specification 305	
		Rise Time Specification 307	
12.	Special	l Oscilloscopes	313
	12-1	Delayed-time-base Oscilloscopes	314
		Need for a Time Delay 314	
		Delayed-time-base System 315	
	12-2	Analog Storage Oscilloscope	317
		Need for Signal Storage 317	
		Bistable Storage CRT 317	
		Variable-persistence Storage CRT 319	
	12-3	Sampling Oscilloscopes	320
		Waveform Sampling 320	
		System Operation 321	
		Expanded Mode Operation 323	
	12-4	Digital Storage Oscilloscopes	324
		Digital Sampling 324	011
		Basic DSO Operation 325	
		Flat Screen Display 326	
		Digital Memory and Resolution 328	
		Interpolation 329	
		Sampling Rate and Bandwidth 329	
		Pulse Rise Time and Sampling Rate 331	
	12-5	DSO Applications	332
		Autoset 332	
		Multichannel Displays 332	
		Waveform Processing 332	
		Pre-triggering and Post-triggering 333	
		Zoom and Restart 334	
		Glitch and Runt Catching 334	
		Baby-sitting Mode 335	
		Roll Mode 336	
		Documentation and Analysis 336	
13	Signal	Generators	339
10.	13-1	Low-frequency Signal Generators	340
	10 1	Wein Bridge Oscillator 340	540
		Frequency Range Changing 342	
		Square-wave Conversion 343	
		Output Controls 343	
		Block Diagram 344	
		Application 344	
	13-2	Function Generators	345
	10-2	Basic Circuit 345	545
		Sine-wave Conversion 348	
		Sine wave Conversion 540	

10.0	Function Generator Block Diagram 350 Function Generator Performance 350 Pulse Generators	251
13-3	Block Diagram 351 Astable Multivibrator as Square-wave Generator 351	351
	Monostable Multivibrator 353 Output Attenuator 355 Pulse Shaping 356	
13-4	Pulse Generator Performance 357 RF Signal Generators Basic Block Diagram 357 Oscillator Circuits 358	357
	Modulation 359 Detailed Block Diagram 360 Application 361	
13-5	RF Signal Generator Performance 362 Sweep Frequency Generators Basic Block Diagram 362 More-detailed Block Diagram 363	362
	Performance 364	
13-6	Frequency Synthesizer Phase-locked Loop 364 Phase Detector 366 VCO 366	364
13-7	Arbitrary Waveform Generator	367
Instrut	nent Calibration	372
14-1	Comparison Methods Absolute and Secondary Instruments 372 DC Voltmeter Calibration 373 DC Ammeter Calibration 374 AC Instrument Calibration 375 Ohmmeter Calibration 375	372
14-2	Wattmeter Calibration 375 Digital Multimeters as Standard Instruments Accuracy Comparison 377	377
14-3	Calibration Instrument 378 DC Potentiometer Basic DC Potentiometer 379 DC Potentiometer with Switched Resistors 380	379
14-4	Classical DC Potentiometer Calibration Methods DC Ammeter Calibration by Potentiometer 383 DC Voltmeter Calibration by Potentiometer 384 Kelvin–Varley Voltage Divider 387	383

14-5	AC Potentiometers Use of DC Potentiometer for AC Measurements 389 Polar AC Potentiometer 391 Co-ordinate AC Potentiometer 392	389
15. Misce	llaneous Instruments	397
15-1	Strip-chart Recorders	398
	Galvanometric Strip-chart Recorder 398 Potentiometric Strip-chart Recorder 399 Representative Strip-chart Recorder 402	
15-2		402
15-3	Plotting Device Characteristics on an X-Y Recorder Diode Characteristics 406 Zener Diode Characteristics 407 Transistor Characteristics 407	406
15-4	Distortion Meter Harmonic Distortion 408 Rejection Amplifier 408 Distortion Meter Block Diagram and Controls 409	408
15-5	Spectrum Analyzers Swept TRF Spectrum Analyzer 411 Swept Superheterodyne Spectrum Analyzer 413 Spectrum Analyzer Controls and Specifications 415 Digital Spectrum Analyzers 416	411
15-6	True RMS Meters Disadvantage of Average-responding Instruments 417 Waveform Crest Factor 418 TRMS Meter Using Nonlinear Circuit 418 Waveforms with a DC Component 419 Thermocouple-type TRMS Meter 419 Representative TRMS Meter 420	417
15-7	Low-Level Voltmeter Low-level Voltage Measurements 420 Chopper-stabilized Amplifier 421 Guard Terminal 421 Representative Low-level Voltmeter 423	420
16. Power	and Energy Measurement	426
16-1	Electrodynamic Wattmeter Electrodynamic Instrument as a Wattmeter 427 Connection Errors 429 Compensated Wattmeter 430	427

		Varmeter 430	
	16-2	Multirange Wattmeters	431
		Wattmeter Voltage and Current Ranges 431	
		Using a Multirange Wattmeter 432	
		Use of Instrument Transformers 433	
	16-3	Power Measurement Without Wattmeters	434
		Three-voltmeter Method 434	
		Three-ammeter Method 435	
	16-4	1	436
		Power in a Three-phase System 436	
		Three-wattmeter Method 436 Single-wattmeter Method 438	
		Two-wattmeter Method 438	
		Use of Transformers 442	
		Three-phase Wattmeter 442	
	16-5	Three-phase Power Factor Determination	443
	16-6	Thermocouple Wattmeter	444
	16-7	Electromechanical Energy Meters	446
		Single-phase Energy Meter 446	
		Energy Meter Error Sources and Compensation 448	
		Energy Meter Connection Methods 449	
		Three-phase Energy Meter 449	
	16-8	Digital Power/Energy Meter	450
17.	Magne	tic Measurement	454
	17-1	Induction Coil and Fluxgate Magnetometers	455
		Induction Coil Magnetometer 455	
		Fluxgate Magnetometer 456	
		Hall-effect Magnetometer	459
	17-3	Flux Density Measurements by Ballistic Galvanometer	461
	17-4	<i>B</i> / <i>H</i> Characteristic and Hysteresis Loop Determination	462
		Reversals Method for B/H Characteristic Determination 462	
		Step Method for B/H Characteristic Determination 463	
		Hysteresis Loop Determination 464	465
	17-5	AC Testing of Magnetic Cores	465
	17-6	Core Loss Measurements	466
		Wattmeter Measurement of Core Loss 466 Separating Hysteresis and Eddy-current Losses 468	
18.		uction to Transducers	473
	18-1	Resistive Transducers	474
		Potentiometer-type Transducer 474	
		Strain Gauges 475	

18-2	Inductive Transducers	478
	Variable Reluctance Transducer 478	
	Linear Variable Differential Transducer (LVDT) 479	
18-3	Capacitive Transducers	482
	Capacitive Displacement Transducers 482	
	Capacitive Pressure Transducer 484	
18-4	Thermal Transducers	485
	Resistance Thermometer 485	
	Thermistor 488	
	<i>Thermocouple Thermometer 490</i> <i>Semiconductor Temperature Sensor 490</i>	
10 E		402
18-5	Optoelectronic Transducers	493
	Light Units 493 Photoconductive Cell 494	
	Photodiodes 497	
	Photomultiplier 449	
18-6	Piezoelectric Transducers	502
Telem	otry	510
	Basics of an Instrumention System	511
	-	513
19-2	Instrumentation Amplifier Difference Amplifier 513	515
	Differential-input/Differential-output Amplifier 514	
	Complete Instrumentation Amplifier 515	
19-3	Filtering	518
170	Basic Filter Types 518	010
	Power Measurement in Decibels 519	
	Gain/Frequency Response 521	
19-4	Passive Filters	522
	RC Low-pass Filter Circuit 522	
	RC High-pass Filter Circuits 524	
	Band-pass Filter 524	
	Notch Filter 526	
	Resonant Filters 527	
19-5	Active Filters	529
	Active Filter Design Categories 529	
	First-order Low-pass Active Filter 529	
	First-order High-pass Filter 530	
	Second-order Low-pass Filter 530	
	Second-order High-pass Filter 532	
10 -	Active Band-pass and Notch Filters 533	
19-6	Amplitude and Frequency Modulation <i>AM and FM 533</i>	533

	AM Demodulation 533	
	FM Demodulation 535	
19-7	Frequency Division Multiplexing	537
19-8	Pulse Modulation	538
	Types of Pulse Modulation 538	
	Pulse Duration Modulation 540	
	PDM Demodulation 541	
	PCM Modulation and Demodulation 541	
19-9	Time Division Multiplexing	541
	Pulse Multiplexing 541	
	Ring Counter 543	
	TDM Coding System 544	
	TDM Decoding System 546	
Appendix 1: 1	Unit Conversion Factor	552
Appendix 2: A	Answers for Odd-numbered Problems	555
Index		559

CHAPTER 1

Measurement Systems, Units, and Standards

Objectives

After studying this chapter, you will be able to

- 1. Discuss CGS, MKS, and SI unit systems and explain the need for a practical units system.
- 2. Use scientific notation, engineering notation, and metric prefixes in stating quantities.
- 3. Identify the three fundamental mechanical units in the SI system, and define SI mechanical derived units.
- 4. Identify the fundamental electrical unit in the SI system, and define the

SI derived units for various electrical and magnetic quantities.

- 5. Explain SI temperature scales.
- 6. Convert between SI and non-SI units when solving problems.
- Determine the dimensions of all fundamental and derived units.
- 8. Explain the various measurement standards and their applications.

INTRODUCTION

Before standard systems of measurement were invented, many approximate units were used. A long distance was often measured by the number of *days* it would take to ride a horse over the distance; a horse's height was measured in *hands*; liquid was measured by the *bucket* or *barrel*. English-speaking peoples adopted the *foot* and the *mile* for measuring distances, the *pound* for mass, and the *gallon* for liquid. Other nations followed the lead of the French in adopting a *metric system*, in which large and small units are very conveniently related by a factor of 10. With the development of science and engineering, accurate units had to be devised, and several different unit systems were used before an international system was adopted.

1-1 UNIT SYSTEMS

CGS and MKS Systems

For many years, systems using the *centimeter*, *gram*, and *second* (*CGS*) as the fundamental mechanical units were employed for scientific and engineering purposes. These were termed *absolute systems* because all quantities could be defined in terms of the three fundamental units. There are two CGS systems: an *electrostatic system* of units (*esu*) and an *electromagnetic units system* (*emu*). In the electrostatic system, the *permittivity of free space* (ε_0) is defined as 1, and the unit of electrical charge is defined as the charge that exerts unit force on a

similar charge located at 1 cm distance. In the electromagnetic system, the *permeability of free space* (μ_0) is defined as 1, and the unit magnetic pole is defined as the pole that exerts unit force on a similar pole located at 1 cm distance.

Except in the case of electrostatic research, the electromagnetic system tended to be more convenient to use than the electrostatic system. However, some of the esu and emu units were different in magnitude, and care had to be taken in making conversions. Many CGS units were too small or too large for practical engineering applications, so a system of *practical units* was also used. Thus, there were two CGS (esu and emu) systems for use in research work, and a third (practical) system for engineering applications. Furthermore, both CGS systems were regarded as *irrational* (or *unrationalized*) because of the presence of the factor 4π in equations where it seemed inappropriate, and its absence in other equations where it was appropriate.

These factors led to the proposed use of the practical units in an *MKS system*, using the meter (m), kilogram (kg), and second (s) as the fundamental units. The name *Giorgi system* is also applied to the MKS system, in reference to Italian Professor Giorgi who first suggested its use. The MKS system was also *rationalized*, to relocate the factor 4π to appropriate equations, and (instead of 1) the permittivity and permeability of free space were redefined as: $\varepsilon_0 = 1/(36 \pi \times 10^{-9})$ and $\mu_0 = 4 \pi \times 10^{-7}$.

The SI System

To facilitate the exchange of scientific information, it was necessary to establish a single system of units of measurement that would be acceptable internationally. A metric system which uses the *meter*, *kilogram*, and *second* as fundamental mechanical units is now generally employed around the world. This was first devised in France, and it is known (from "systéme international") as the *SI system*.

The meter, kilogram, and second are the *fundamental mechanical units* of the SI system. Other units which are defined in terms of the fundamental units are termed *derived units*; for example, the unit of area is meters squared $(m \times m = m^2)$. Thus, m^2 is a derived unit. Some other derived units are those for force, work, energy, and power.

A fundamental electrical unit is required in the SI system, and this is the *ampere* (A), the unit of electric current. With this addition, the MKS system became an *MKSA system*. Fundamental units are also required for temperature and illumination calculations, and these are the *kelvin* (K) and the *candela* (cd), respectively. The fundamental mechanical units are sometimes referred to as the *primary fundamental units*, and the units for current, temperature, and illumination are then termed *auxiliary fundamental units*.

When solving problems, it is sometimes necessary to convert between SI and other unit systems. Appendix 1 provides a list of conversion factors for this purpose.

Section Review

1-1.1 Explain the following in relationship to unit systems: CGS, MKSA, esu, emu, absolute system, practical units.

1-2 SCIENTIFIC NOTATION AND METRIC PREFIXES

Scientific Notation

Very large or very small numbers are conveniently written as a number multiplied by 10 raised to a power:

$$100 = 1 \times 10 \times 10 = 1 \times 10^{2}$$

$$10\ 000 = 1 \times 10 \times 10 \times 10 \times 10 = 1 \times 10^{4}$$

$$0.001 = 1/(10 \times 10 \times 10) = 1/10^{3} = 1 \times 10^{-3}$$

$$1500 = 1.5 \times 10^{3}$$

$$0.015 = 1.5 \times 10^{-2}$$

Numbers presented in this form are said to use *scientific notation*. Note that in the SI system of units, spaces are used instead of commas when writing large numbers. Four-numeral numbers are an exception. One thousand is written as 1000, while ten thousand is 10 000.

Metric Prefixes

Metric prefixes and the letter symbols for the various multiples and submultiples of 10 are listed in Table 1-1, with those most commonly used with electrical units shown in bold type. The prefixes are employed to simplify the representation of very large and very small quantities. Thus, 1000 Ω can be expressed as 1 *kilohm*, or 1 k Ω . Here *kilo* is the prefix that represents 1000, and k is the symbol for *kilo*. Similarly, 1×10^{-3} A can be written as 1 *milliampere*, or 1 mA.

	TABLE 1-1	Scientific	Notation	and	Metric Prefixes
--	-----------	------------	----------	-----	-----------------

Value	Scientific notation	Prefix	Symbol
1 000 000 000 000	10 ¹²	tera	Т
1 000 000 000	10 ⁹	giga	G
1 000 000	10^{6}	mega	Μ
1000	10 ³	kilo	К
100	10 ²	hecto	h
10	10	deka	da
0.1	10 ⁻¹	deci	d
0.01	10 ⁻²	centi	с
0.001	10 ⁻³	milli	m
0.000 001	10 ⁻⁶	micro	μ
0.000 000 001	10 ⁻⁹	nano	n
0.000 000 000 001	10 ⁻¹²	pico	р

Engineering Notation

As already discussed, $1 \text{ k}\Omega$ is $1 \times 10^3 \Omega$, and 1 mA is $1 \times 10^{-3} \text{ A}$. Note also from Table 1-1 that $1 \times 10^6 \Omega$ is expressed as $1 \text{ M}\Omega$, and $1 \times 10^{-6} \text{ A}$ can be written as $1 \mu \text{A}$. These quantities, and most of the metric prefixes in Table 1-1, involve multiples of 10^3 or 10^{-3} . Quantities that use 10^3 or 10^{-3} are said to be written in *engineering notation*. A quantity such as $1 \times 10^4 \Omega$ is more conveniently expressed as $10 \times 10^3 \Omega$, or $10 \text{ k}\Omega$. Also, $47 \times 10^{-4} \text{ A}$ is best written as $4.7 \times 10^{-3} \text{ A}$, or 4.7 mA. For electrical calculations, engineering notation is more convenient than ordinary scientific notation.

Example 1-1

Write the following quantities using (a) scientific notation, (b) engineering notation, (c) metric prefixes: $12\ 000\ \Omega$, $0.000\ 3\ V$, $0.000\ 01\ A$. *Solution*

	(a) Scientific notation	(b) Engineering notation	(c) Metric prefixes
12 000 Ω	$1.2 \times 10^4 \ \Omega$	$12 \times 10^3 \Omega$	12 kΩ
0.000 3 V	$3 \times 10^{-4} \mathrm{V}$	$300\times 10^{-6}~\rm V$	300 µV
0.000 01 A	$1 \times 10^{-5} \mathrm{A}$	$10\times 10^{-6}\mathrm{A}$	10 µA

Practice Problem

1-2.1 Express the following quantities using engineering notation: $0.005, 77700, 6 \times 10^{-8}, 6.8 \times 10^4, 5.9 \times 10^7, 0.00033$

1-3 THE SI MECHANICAL UNITS

Fundamental Mechanical Units

As discussed above, the three fundamental mechanical units in the SI system are:

Unit of *length*: the *meter* (m)

Unit of *mass*: the *kilogram* (kg)

Unit of *time*: the *second* (s)

The *meter* was originally defined as one ten-millionth of a meridian passing through Paris from the North Pole to the equator. The kilogram was defined as 1000 times the mass of one cubic centimeter of distilled water. The *liter* is 1000 times the volume of one cubic centimeter of liquid. Consequently, one liter of water has a mass of 1 kilogram. Because of the possibility of error in the original measurement, the meter was redefined in terms of atomic radiation. Also, the kilogram is now defined as the mass of a certain platinum-iridium standard bar kept at the International Bureau of Weights and Measures in France. The *second* is, of course, 1/(86 400) of a mean solar day, but it is more accurately defined by atomic radiation.

Unit of Force

The SI unit of force is the newton¹ (N), defined as that force which will give a mass of 1 kilogram an acceleration of one meter per second per second.

When a body is to be accelerated or decelerated, a force must be applied proportional to the desired rate of change of velocity, that is, proportional to the acceleration (or deceleration).

Force = mass \times acceleration

$$F = m a \tag{1-1}$$

Equation 1-1 gives the force in newtons when the mass is in kilograms and the acceleration is in m/s^2 .

If the body is to be accelerated vertically from the earth's surface, the *acceleration due to gravity* (*g*) must be overcome before any vertical motion is possible. In SI units:

$$g = 9.81 \text{ m/s}^2$$
 (1-2)

Thus, a mass of 1 kg has a gravitational force of 9.81 N.

Work

When a body is moved, a force is exerted to overcome the body's resistance to motion.

The work done in moving a body is the product of the force and the distance through which the body is moved in the direction of the force.

$$Work = \text{force} \times \text{distance}$$
(1-3)
$$W = F d$$

The SI unit of work is the joule² (J), defined as the amount of work done when a force of one newton acts through a distance of one meter.

Thus, the *joule* may also be termed a *newton-meter*. For the equation W = F d, work is expressed in joules when *F* is in newtons and *d* is in meters.

Power

Power is the time rate of doing work.

P

If a certain amount of work *W* is to be done in a time *t*, the power required is

$$ower = \frac{Work}{time}$$

$$P = \frac{W}{t}$$
(1-4)

*The SI unit of power is the watt*³ (W)*, defined as the power developed when one joule of work is done in one second.*

For P = W/t, *P* is in watts when *W* is in joules and *t* is in seconds.

¹Named for the great English philosopher and mathematician Sir Isaac Newton (1642–1727).

²Named after the English physicist James P. Joule (1818–1899).

³Named after the Scottish engineer and inventor James Watt (1736–1819).

6 Electronic Instrumentation and Measurements

Energy

Energy is defined as the capacity for doing work. Consequently, energy is measured in the same units as work.

When 1 W of power is used for one hour, the energy consumed (or work done) is one *watt-hour* (1 Wh). When 1 kW is used for one hour, 1 *kilowatt-hour* (1 kWh) of energy is consumed. Recall that power is the time rate of doing work, and that a power of 1 W represents a work rate of *one joule per second* (1 J/s). Therefore, when 1 W of power is dissipated for 1 s, 1 J of energy is consumed, or 1 J of work is done. Similarly, when 1 kW of power is expended for 1 minute

Energy consumed = $1 \text{ kW} \times 60 \text{ s}$

```
= 60 \text{ kJ}
```

and when 1 kW is expended for 1 hour,

Energy consumed = $1 \text{ kW} \times 60 \text{ s} \times 60 \text{ min}$

```
= 3600 kJ
= 3.6 MJ
```

The megajoule (MJ) is the SI unit of energy consumption.

Example 1-2

Calculate the power required to raise a 100 kg load 100 m vertically in 30 s.

Solution

Eqs. 1-1 & 1-2,	$F = m \times a = 100 \text{ kg} \times 9.81 \text{ m/s}^2$
	= 981 N
Eq. 1-3,	$W = F \times d = 981 \text{ N} \times 100 \text{ m}$
	= 98 100 J
Eq. 1-4,	$P = \frac{W}{t} = \frac{98\ 100\ J}{30\ s}$
	= 3.27 kW

Section Review

1-3.1 State the SI units for power and work, and define each unit.

Practice Problem

1-3.1 Determine how long it takes for an engine with a 750 W output to raise a 50 kg load vertically through 65 m.

1-4 THE SI ELECTRICAL UNITS

Units of Current and Charge

Electric current (I) is a flow of charge carriers. Therefore, current could be defined in terms of the quantity of electricity (Q) that passes a given point in a conductor during a time of 1 s.

*The coulomb*⁴ (*C*) *is the unit of electrical charge or quantity of electricity.*

The coulomb was originally selected as the fundamental electrical unit from which other units were derived. However, because it is much easier to measure current accurately than it is to measure charge, the unit of *current* is now the *fundamental electrical unit* in the SI system. Consequently, the coulomb is a *derived unit*, defined in terms of the unit of electric current.

The ampere⁵ (A) is the unit of electric current.

The ampere (also termed an absolute ampere) is defined as that constant current which, when flowing in each of two infinitely long parallel conductors 1 meter apart, exerts a force of 2×10^{-7} newton per meter of length on each conductor.

The coulomb is defined as that charge which passes a given point in a conductor each second, when a current of 1 ampere flows.

These definitions show that the coulomb could be termed an *ampere-second*. Conversely, the ampere can be described as a *coulomb per second*:

$$Amperes = \frac{coulomb}{second}$$
(1-5)

It has been established experimentally that 1 coulomb is equal to the total charge carried by 6.24×10^{18} electrons. Therefore, the charge carried by one electron is

$$Q = 1/(6.24 \times 10^{18})$$
$$= 1.602 \times 10^{-19} \,\mathrm{C}$$

Emf, Potential Difference, and Voltage

The volt⁶ (V) is the unit of electromotive force (emf) and potential difference.

The volt (V) is defined as the potential difference between two points on a conductor carrying a constant current of one ampere when the power dissipated between these points is one watt.

As already noted, the coulomb is the charge carried by 6.24×10^{18} electrons. One joule of work is done when 6.24×10^{18} electrons are moved through a potential difference of 1 V. One electron carries a charge of $1/(6.24 \times 10^{18})$ coulomb. If only one electron is moved through 1 V, the energy involved is an *electron volt* (*eV*).

$$1 \text{ eV} = 1/(6.24 \times 10^{18}) \text{ J}$$
(1-6)

⁴Named after the French physicist Charles Augustin de Coulomb (1736–1806).

⁵Named after the French physicist and mathematician Andre Marie Ampere (1775–1836).

⁶Named in honour of the Italian physicist Count Alessandro Volta (1745–1827), inventor of the voltaic pile.

The electron-volt is frequently used in the case of the very small energy levels associated with electrons in orbit around the nucleus of an atom.

Resistance and Conductance

The ohm⁷ is the unit of resistance, and the symbol used for ohms is Ω ; the Greek capital letter omega.

The ohm is defined as that resistance which permits a current flow of one ampere when a potential difference of one volt is applied to the resistance.

The term *conductance* (*G*) is applied to the reciprocal of resistance. The siemens⁸ (*S*) is the unit of conductance. The unit of conductance was previously the mho (*ohm* spelled backwards).

Magnetic Flux and Flux Density

*The weber*⁹ (Wb) *is the SI unit of magnetic flux.*

The weber is defined as the magnetic flux which, linking a single-turn coil, produces a 1 V emf when the flux is reduced to zero at a constant rate in 1 s.

The tesla¹⁰ (T) is the SI unit of magnetic flux density.

The tesla is the flux density in a magnetic field when 1 weber of flux occurs in a plane of 1 square meter; that is, the tesla can be described as 1 Wb/ m^2 .

Inductance

The SI unit of inductance is the henry¹¹ (H).

The inductance of a circuit is 1 henry, when a 1 V emf is induced by the current changing at the rate of 1 A/s.

Capacitance

The farad¹² (F) is the SI unit of capacitance.

The farad is the capacitance of a capacitor that contains a charge of 1 coulomb when the potential difference between its terminals is 1 volt.

Example 1-3

A bar magnet with a 1 inch square cross-section has 500 maxwells (see Appendix 1) total magnetic flux. Determine the flux density in teslas.

Solution

From Appendix 1,

Total flux, $\Phi = (500 \text{ maxwell}) \times 10^{-8} \text{ Wb}$ = 5 μ Wb

⁷Named after the German physicist Georg Simon Ohm (1787–1854), whose investigations led to his statement of *Ohm's law of resistance*.

⁸Named after Sir William Siemens (1823–1883), a British engineer who was born Karl William von Siemens in Germany.

⁹Named after the German physicist Wilhelm Weber (1804–1890).

¹⁰Named for the Croatian-American researcher and inventor Nikola Tesla (1856–1943).

¹¹Named for the American physicist Joseph Henry (1797–1878).

¹²Named for the English chemist and physicist Michael Faraday (1791–1867).

Chapter 1 Measurement Systems, Units, and Standards 9

Area,

Flux density,

 $A = (1 \text{ in} \times 1 \text{ in}) \times (2.54 \times 10^{-2})^2 \text{ m}^2$ = 2.54² × 10⁻⁴ m² $B = \frac{\Phi}{A} = \frac{5 \,\mu\text{Wb}}{2.54^2 \times 10^{-4}}$ = 7.75 mT

Section Review

- 1-4.1 State the SI units for current and charge, and define each unit.
- **1-4.2** State the SI units for magnetic flux and flux density, and define each unit.

Practice Problem

1-4.1 A bar magnet has a cross-section of 0.75 in $\times 0.75$ in and a flux density of 1290 lines per square inch. Calculate the total flux in webers.

1-5 TEMPERATURE UNITS

Temperature Scales

There are two SI temperature scales, the *Celsius scale*¹³ and the *Kelvin scale*.¹⁴ The Celsius scale has 100 equal divisions (or *degrees*) between the freezing temperature and the boiling temperature of water. At normal atmospheric pressure, water freezes at 0°C (*zero degrees Celsius*) and boils at 100°C.

The Kelvin temperature scale, also known as the *absolute scale*, commences at absolute zero of temperature, which corresponds to -273.15° C. Therefore, 0°C is equal to 273.15 K, and 100°C is the same temperature as 373.15 K. A temperature difference of 1 K is the same as a temperature difference of 1°C. With the (non-SI) *Fahrenheit scale*, 32°F is the freezing temperature of water and 212°F is the boiling temperature.

Example 1-4

The normal human body temperature is given as 98.6°F. Determine the equivalent Celsius and Kelvin scale temperatures.

Solution

From Appendix 1,

```
Celsius temperature = \frac{{}^{\circ}F - 32^{\circ}}{1.8} = \frac{98.7^{\circ} - 32^{\circ}}{1.8} = 37^{\circ}C
Kelvin temperature = \frac{{}^{\circ}F - 32^{\circ}}{1.8} + 273.14
= 310.15 K
```

¹³Invented by the Swedish astronomer and scientist Anders Celsius (1701–1744).

¹⁴Named for the Irish-born scientist and mathematician William Thomson, who became Lord Kelvin (1824–1907).

Joules Equivalent

To raise a liter of water through 1°C requires an energy input of 4187 J. This is known as *Joules equivalent*, or the mechanical equivalent of heat. Using Joules equivalent, the energy required to raise a quantity of water through a given temperature change can be easily calculated. When water is heated, the container must also be raised to the same temperature as the water, so each container is usually defined as having a certain *water equivalent*. The water equivalent is the quantity of water that would absorb the same amount of energy as the container when heated through a specified temperature change.

Practice Problem

1-5.1 Calculate the time required for a kettle with a 1500 W heating element and a 0.5 liter water equivalent to raise 2 liters of water from 24°C to boiling point.

1-6 DIMENSIONS

Table 1-2 gives a list of quantities, quantity symbols, units, unit symbols, and quantity dimensions. The symbols and units are those approved for use with the SI system. To understand the dimensions column, consider the fact that the area of a rectangle is determined by multiplying the lengths of the two sides:

Area = $length \times length$

 $[velocity] = \frac{[length]}{[time]} = \frac{[L]}{[T]} = [LT^{-1}]$

 $[area] = [L][L] = [L]^2$

The *dimensions* of area are $(length)^2$

Similarly,

or,

$$[acceleration] = \frac{[velocity]}{[time]} = \frac{[LT^{-1}]}{[T]} = [LT^{-2}]$$
$$[force] = [mass] \times [acceleration]$$
$$= [M][LT^{-2}] = [MLT^{-2}]$$
$$[work] = [force] \times [distance]$$
$$= [MLT^{-2}][L] = [ML^2T^{-2}]$$
$$[power] = \frac{[work]}{[time]} = \frac{[ML^2T^{-2}]}{[T]} = [ML^2T^{-3}]$$

For the electrical quantities, current is another fundamental unit. So, electrical quantities can be analyzed to determine dimensions in the fundamental units of *L*, *M*, *T*, and *I*.

Charge = current \times time [charge] = [I][T] = [IT]

Example 1-5

Determine the dimensions of voltage and resistance. Solution From, P = E Ivoltage $[E] = \frac{[P]}{[I]} = \frac{[ML^2T^{-3}]}{[I]}$ $= [ML^2T^{-3}I^{-1}]$ resistance, $[R] = \frac{[E]}{[I]} = \frac{[ML^2T^{-3}I^{-1}]}{[I]}$ $= [ML^2T^{-3}I^{-2}]$

TABLE 1-2	SI Units	, Symbols,	and	Dimensions
-----------	----------	------------	-----	------------

Quantity	Symbol	Unit	Unit symbol	Dimensions
Length	1	meter	m	[L]
Mass	т	kilogram	kg	[<i>M</i>]
Time	t	second	s	[T]
Area	Α	square meter	m ²	$[L^2]$
Volume	V	cubic meter	m ³	$[L^3]$
Velocity	υ	meter per second	m/s	$[LT^{-1}]$
Acceleration	а	meter per sec per sec	m/s^2	$[LT^{-2}]$
Force	F	newton	Ν	$[MLT^{-2}]$
Pressure	р	newton per square meter	N/m^2	$[ML^{-1}T^{-2}]$
Work	W	joule	J	$[ML^2T^{-2}]$
Power	P	watt	W	$[ML^2T^{-3}]$
Electric current	Ι	ampere	А	[I]
Electric charge	Q	coulomb	С	[IT]
Emf	V	volt	V	$[ML^2T^{-3}I^{-1}]$
Electric field strength	ξ	volt per meter	V/m	$[MLT^{-3}I^{-1}]$
Resistance	R	ohm	Ω	$[ML^2T^{-3}I^{-2}]$
Capacitance	С	farad	F	$[M^{-1}L^{-2}T^4I^2]$
Inductance	L	henry	Н	$[ML^2T^{-2}I^{-2}]$
Magnetic field strength	Н	ampere per meter	A/m	$[IL^{-1}]$
Magnetic flux	Φ	weber	Wb	$[ML^2T^{-2}I^{-1}]$
Magnetic flux density	В	tesla	Т	$[MT^{-2}I^{-1}]$

Practice Problems

- **1-6.1** Determine the dimensions of power from $P = I^2 R$ and from $P = V^2/R$.
- **1-6.2** The permeability of a magnetic material is $\mu = B/H$. Determine the dimensions of μ .

1-7 MEASUREMENT STANDARDS

Standard Classifications

Electrical measurement standards are precise resistors, capacitors, inductors, voltage sources, and current sources, which can be used for comparison purposes when measuring electrical quantities. For example, resistance can be accurately measured by means of a Wheatstone bridge (see Section 8-2) which uses a standard resistor. Similarly, standard capacitors and inductors may be employed in bridge (or other) methods to accurately measure capacitance and inductance.

Measurement standards are classified in four levels: *international standards*, *primary standards*, *secondary standards*, *and working standards*.

International standards are defined by international agreements, and are maintained at the International Bureau of Weights and Measures in France. These are as accurate as it is scientifically possible to achieve. They may be used for comparison with primary standards, but are otherwise unavailable for any application.

Primary standards are maintained at institutions in various countries around the world, such as the National Bureau of Standards in Washington. They are also constructed for the greatest possible accuracy, and their main function is checking the accuracy of secondary standards.

Secondary standards are employed in industry as references for calibrating high-accuracy equipment and components, and for verifying the accuracy of working standards. Secondary standards are periodically checked at the institutions that maintain primary standards.

Working standards are the standard resistors, capacitors, and inductors usually found in a measurements laboratory. Working standard resistors are usually constructed of manganin or a similar material, which has a very low temperature coefficient. They are normally available in resistance values ranging from 0.01 Ω to 1 M Ω , with typical accuracies of ±0.01% to ±0.1%. A working standard capacitor could be air dielectric type, or it might be constructed of silvered mica. Available capacitance values are 0.001 µF to 1 µF with a typical accuracy of ±0.02%. Working standard inductors are available in values ranging from 100 µH to 10 H with typical accuracies of ±0.1%. *Calibrators* provide standard voltages and currents for calibrating voltmeters and ammeters (see Section 14-2).

IEEE Standards

Standards published by the Institute of Electrical and Electronic Engineers (IEEE) are not the kind of measurement standards discussed above. Instead,

for example, they are standards for electrical hardware, for the controls on instrument front panels, for test and measuring procedures, and for electrical installations in particular situations. Standard device and logic graphic symbols for use on schematics are also listed. For instrumentation systems, a very important IEEE standard is standard hardware for interfacing instruments to computers for monitoring and control purposes. Detailed information about IEEE standards is available on the internet.

Section Review

1-7.1 List the various categories of measurement standards, and discuss their applications.

REVIEW QUESTIONS

Section 1-1

- **1-1** Identify the two CGS units systems, and discuss difficulties that occur with their use.
- **1-2** Briefly discuss the origins of the SI system as an MKS system, and why the MKS system became the preferred practical units system.
- **1-3** Define the following in respect to a units system: Fundamental units, derived units, primary fundamental units, auxiliary fundamental units, rationalized system.
- **1-4** State the expressions for the permittivity of free space and the permeability of free space in the CGS unit systems and in the SI system.

Section 1-2

1-5 List the names of the various metric prefixes and the corresponding symbols. Also, list the value of each prefix in scientific notation.

Section 1-3

- **1-6** List the three fundamental SI mechanical units and unit symbols, and discuss their origin.
- **1-7** Define the SI units for force and work.
- **1-8** Define *g*, and state its numerical value in SI units.
- 1-9 Identify the SI units and unit symbols for energy and power. Define each unit.

Section 1-4

- **1-10** State the SI units and unit symbols for electric current and charge. Define each unit.
- **1-11** Define the SI units for electrical resistance and conductance.
- **1-12** Identify the SI units and unit symbols for magnetic flux and flux density. Define each unit.
- **1-13** Define the SI units for inductance and capacitance.

Section 1-5

1-14 Name the two SI temperature scales, and identify the freezing and boiling temperatures of water for each scale.

Section 1-6

1-15 State the dimensions of the four fundamental units in the SI system, and write the dimensions for volume, velocity, and charge.

Section 1-7

1-16 List the various levels of measurement standards, and discuss the application of each classification.

PROBLEMS

Section 1-2

- 1-1 Express the following quantities using (a) scientific notation, (b) metric prefixes: 0.029 A, 13 000 Ω , 5240 V, 0.0003 H, 738 000 Ω .
- 1-2 Perform the following calculations to produce the answers using scientific notation: (a) $0.29 \times 1300/0.006$, (b) 83 400/5.13, (c) $0.4^2 \times 300$, (d) $3^{10}/(\sqrt{169})$, (e) $0.005^3/1200$.
- 1-3 Express the following quantities using (a) engineering notation, (b) metric prefixes: 6800Ω , 0.000 05 A, 0.027 H, $82 000 \Omega$, 0.0005 F.

Section 1-3

- **1-4** Referring to the unit conversion factors in Appendix 1, perform the following conversions: (a) 6215 miles to kilometers, (b) 50 miles per hour to kilometers per hour, and (c) 12 square feet to square centimeters.
- **1-5** Determine how long it takes light to travel to earth from a star 1 million miles away. The speed of light is 3×10^8 m/s.
- **1-6** The speed of sound in air is 345 m/s. Calculate the distance in miles from a thunderstorm when the thunder is heard 5 s after the lightning flash.
- **1-7** A 140 lb person has a height of 5 ft 7 in. Convert these measurements into kilograms and centimeters.
- **1-8** Determine the force that must be exerted by a crane to lift a 20 000 kg load.
- **1-9** A 2000 kg automobile is accelerated to 70 km/h in a 20 s time period. Neglecting all friction effects, calculate the force exerted by the engine.
- **1-10** A 1000 kg elevator with a 1500 kg load is raised through a height of 60 m in 1 minute. Calculate the work done and the power involved.
- **1-11** One thousand liters of water is pumped through a 20 m height in a 30 minute time period. Determine the work done and the power required.

Section 1-4

- **1-12** A 1/4 horsepower electric motor is operated 8 hours per day for 5 days every week. Assuming 100% efficiency, calculate the amount of energy consumed in 1 year in kWh and in MJ.
- **1-13** Calculate the number of electrons that pass through a resistor in a 1.5 h period when a 500 mA current flows.
- 1-14 Determine the work done in joules when a 2 A current flows through a 12 Ω resistor for 45 minutes.
- **1-15** An electrical appliance consumes 1500 W of power when connected to a 115 V supply. Determine the supply current and the energy consumed in 5 h of operation.
- **1-16** Calculate the conductance of a lamp that dissipates 60 W when connected to a 120 V supply.
- **1-17** An electronic amplifier produces 12 W output to a speaker. The amplifier draws a current of 650 mA from a 25 V supply. Calculate the amplifier efficiency.

- **1-18** A 115 V electrical appliance with 80% efficiency absorbs 3 kW from the supply. Determine the energy consumed by the appliance and the energy output from the supply over a 12 h period.
- **1-19** A total flux of 0.5 μ Wb is emitted from one pole of a bar magnet. The pole dimensions are 0.48 inches × 0.48 inches. Calculate the flux density in tesla within the metal. Also, determine the flux density at a short distance from the pole if all of the flux is contained in an area of 2 inches × 2 inches.

Section 1-5

- 1-20 Calculate the Celsius and Kelvin scale equivalents of 80°F.
- **1-21** An electric water heater takes 6 minutes to boil 1 liter of water in a pot which has a 0.2 liter water equivalent. If the element draws 11 A from the 115 V supply, calculate the efficiency of the heater.

Section 1-6

- **1-22** Determine the dimensions of area, volume, velocity, and acceleration.
- **1-23** Derive the dimensions for force, work, energy, and power.
- **1-24** Derive the dimensions for charge, voltage, and resistance.
- 1-25 Determine the dimensions of capacitance and inductance.
- **1-26** The balance equations for a Maxwell-Wein bridge (Section 10-4) gives $L_s = C_3$ $R_1 R_4$. Use dimensional analysis to show that the right side of the equation has the dimensions of inductance.

Practice Problem Answers

- **1-2.1** 5×10^{-3} , 77.7 $\times 10^{3}$, 60 $\times 10^{-9}$, 59 $\times 10^{6}$, 330 $\times 10^{-6}$
- **1-3.1** 42.5 s
- **1-4.1** 7 μWb
- 1-5.1 8.8 min
- **1-6.1** $[ML^2T^{-3}]$
- **1-6.2** $[MLT^{-2}I^{-2}]$